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LEVERAGING CAMERA ATTITUDE PRIORS FOR STRUCTURE
FROM MOTION OF SMALL, NONCOOPERATIVE TARGETS

Kaitlin Dennison* and Simone D’Amico†

This paper derives and evaluates a formulation of structure from motion (SfM)
that incorporates rotation priors, called rotation-informed SfM (RISfM). RISfM
uses spacecraft inertial attitude measurements in addition to pixel measurements
of the target’s features to estimate their 3D points and the translation of the cam-
era. Traditional SfM, which only uses pixel measurements to estimate 3D structure
and camera pose, is often considered for low size, weight, power, and cost depth
perception and state estimation. However, given a prescribed relative geometry
between cameras and specific camera intrinsic parameters, there is a limit to the
size of the target, below which SfM breaks down. Even with a wide, inter-image
baseline, it is difficult to maintain a safe distance from a small, noncooperative
target. In contrast, RISfM has 59.4% less 3D reconstruction error than traditional
SfM in orbit configurations where safe separation and keypoint correlation can be
achieved. When evaluated on simulated imagery of a 1.48 m width target space-
craft using keypoint descriptors as 2D point measurements, RISfM results in a 3D
reconstruction error of 13.25 cm while 15.8 m from the target.

INTRODUCTION

Autonomous spacecraft rendezvous with noncooperative targets is essential for on-orbit servicing
and debris removal. Great progress has been made in the field of cooperative target pose estimation
where target characteristics and shape are known a priori.1, 2 However, if a model of the target is
not available, there are three common pathways to recover its 3D structure: LiDAR, binocular, and
monocular systems.3 Monocular systems are becoming more popular for their low size, weight,
power, and cost (SWaP-C) properties and measurement spread.4, 5 State of the art algorithms for
monocular-based 3D shape recovery are severely limited by the noise of the input data (pixel mea-
surements or camera pose knowledge) and the scene relative geometry. Here, relative geometry
refers to the distance to the target and angular separation between cameras. To overcome these
limits, this paper develops a formulation of structure from motion (SfM) that incorporates rotation
measurements, which is called rotation-informed SfM (RISfM) throughout this paper.

A previous publication by the authors, Dennison and D’Amico (2023),6 showed an analysis of
traditional SfM and synthetic stereovision (SV) under varying noise and relative geometry cases.
It is possible to infer from the analysis that, given a prescribed relative geometry between cameras
and specific camera intrinsic parameters, there is a limit to the size of the target, below which SfM
performance becomes unacceptable. Even with a wide baseline (translation between camera poses),
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it is difficult to maintain a safe separation from a small, noncooperative target. This presents a
challenge because many cases of space rendezvous approach SmallSats. The vast majority of state
of the art SfM architectures such as VisualSfM,7 ORB-SLAM,8 and COLMAP9 rely on traditional
SfM methods like the one evaluated in Dennison and D’Amico (2023) to initialize their procedure.
How do we maximize the distance where SfM is possible given a certain geometry of the problem
and number of cameras?

Incorporating a partial camera pose prior (position or rotation) may be the answer. For Earth-
orbiting spacecraft, position measurements sometimes available through GNSS or pseudorange and
Doppler and are on the order of 1 to 10m, depending on the source and orbit.10 Attitude mea-
surements are typically acquired onboard spacecraft with the use of star-trackers and have low un-
certainties on the order of 60 arcsec.11 The authors’ previous study showed that noisy position
measurements propagated significantly more error than noisy rotation measurements did during SV
applications because of the scale of the typical position and rotation measurement errors for space-
craft rendezvous.6

A position-informed SfM formulation exists where position measurements are incorporated into
SfM in Carceroni et al. 2006.12 Another previous publication by the authors, Dennison, Stacey, and
D’Amico (2023),4 used position and attitude priors for multi-agent SV to initialize an unscented
Kalman filter for asteroid rendezvous.

As for SfM that incorporates rotational knowledge, Cui et al. (2017)13 developed a factor-graph
SfM architecture14 called Hybrid SfM (HSfM) that uses a SfM formulation that assumes rotation is
provided. However, Cui focuses on a method for estimating the rotation matrices from correlated
images and the overall post-initialization architecture. The SfM formulation is simply a means to
an end and no consideration is given for cases where external rotation measurements are provided
in addition to the images.

This paper derives RISfM using the same SfM formulation as Cui et al. (2017)13 but in a context
usable for any SfM architecture where rotation is either estimated or measured externally from SfM.
The performance of RISfM is compared to traditional SfM formulations with respect to camera
relative geometry using simulated imagery of a target spacecraft. It is also evaluated with respect
to image and attitude measurement noise as well as three difference keypoint descriptors. RISfM
is able to achieve higher precision 3D reconstruction and camera translation estimates from two
images at larger distances from the target than traditional SfM techniques.

The remainder of this paper is set up as follows. First, the relevant mathematics of traditional
SfM techniques are explained. Then RISfM is derived in the context of inertial rotation measure-
ments. Next, RISfM is evaluated using synthetic images and keypoint descriptors. Finally, the paper
concludes and discusses ways forward.

MATHEMATICAL PRELIMINARIES

This section describes the camera projection model as well as traditional SfM techniques that
estimate both 3D structure and camera pose. The purpose is to establish the notation, equations, and
context for the derivation of RISfM in the following section.
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Image projection

The finite projective camera model uses the camera projection matrix M to transform a 3D point
P into a 2D point p. It is defined as

p = MP . (1)

This uses the homogeneous form of the points such that p = [u v 1]T and P = [xw yw zw w]T ,
where w is a scale factor. P is expressed in the world frame W , which is any 3D orthonormal frame
where P is constant,15 such target surface points oriented in a target body-fixed right-handed triad.
The camera projection matrix corresponding to the jth image is defined as

Mj = Kj

[
R

Cj

W

∣∣∣ CjtW

]
, (2)

where Kj is the camera’s calibration matrix. The rotation matrix from W to the jth camera-fixed
frame Cj is denoted as R

Cj
W . In this work, C is defined such that the z-axis points along the boresight

of the camera, the x-axis is parallel to the image frame horizontal axis, and the y-axis completes
the right-handed triad (pointing down in the image frame). The vector CjtW is the 3D vector from
camera j’s optical center to the origin of W , expressed in the Cj frame.

When working with multiple cameras or views from the same camera, it is useful to define the
world frame W to be aligned with a single camera frame, typically the frame of the first image
(W = C1). In other words, the body-fixed axes are assumed to be aligned with the C1 camera
frame without loss of generality. The first and jth projection matrices (see Eq. (2)) become

M1 = K1

[
I3 | 03×1

]
and Mj = Kj

[
R

Cj

C1

∣∣∣ CjtC1

]
, (3)

where I3 is a 3×3 identity matrix and 03×1 is a 3×1 vector of zeros. Eq. (3) is called the canonical
form of a pair of camera matrices.16 From this point forward, the canonical form will be used where
W = C1 and notation will be simplified in the context of two images such that R = R

C2
C1

and
t = C2tC1 . Any values of P are in C1.

It is important to note that because P must be constant in W , if the images are taken at different
times, C1 represents the scene at the moment that image 1 is taken. This means that R

Cj
C1

and CjtC1

encodes the target’s motion between the time step of image 1 and the time step of image j. The
implications of this constraint will be further explored in a later section in the context of RISfM and
inertial attitude measurements.

Traditional Structure from Motion

Structure from motion (SfM) is the recovery of the motion of the camera (R and t) between
two images and the structure of the scene (the 3D points P ) purely from 2D measurements p of the
points matched between the images. This can be computed when the camera is and is not calibrated.
The uncalibrated case will be discussed first as it was the first method developed for SfM.

Uncalibrated Cameras A 3× 3, rank 2 matrix, the fundamental matrix F, relates the two image
frames. This matrix has seven degrees of freedom and is only defined up to a scale.16 It is related to
the camera matrices via,

F = K−T
2 [t]×RK−1

1 (4)
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where [t]× is the skew-symmetric form of t.

Uncalibrated SfM starts with the epipolar constraint, which relates F to a pair of points (p1 from
image 1 and p2 from image 2) matched between two images. It is defined mathematically by

pT
2 Fp1 = 0. (5)

Eq. (5) can be rearranged in typical least-squares fashion such that,

[u1u2 v2u1 u1 u1v1 v1v2 v1 u2 v2 1]f = 0 (6)

where f is the vector form of F. Eight or more constraints are required to determine f from noisy
point measurements. These can be obtained by appending at least seven more point pairs (for a
total of eight point pairs) by vertically stacking paired 2D measurements into a single measurement
matrix represented as

CF =

 u1,1u2,1 v2,1u1,1 u1,1 u1,1v1,1 v1,1v2,1 v1,1 u2,1 v2,1 1
...

u1,Nu2,N v2,Nu1,N u1,N u1,Nv1,N v1,Nv2,N v1,N u2,N v2,N 1

 . (7)

This results in the equation, CFf = 0N×1, which can be solved for f using singular value
decomposition (SVD) where USVT = SVD(CF ) and f is the last column of V. This computation
of F is called the 8-point algorithm. Hartley and Zisserman discuss a more reliable version of
this algorithm in chapter 11 of Multiple View Geometry16 called the normalized 8-point algorithm.
Specifically, the points should be normalized and the rank constraints of F must be enforced. Hartley
and Zisserman also describe multiple versions of the normalized 8-point algorithm that improve
results and robustness such as the polynomial method and the gold standard algorithm.16

Calibrated Cameras A similar matrix exists for the calibrated camera case: the essential matrix
E. This matrix is also 3× 3, rank 2, and of ambiguous scale, but has only five degrees of freedom.
It is represented mathematically by

E = [t]×R = KT
2 FK1. (8)

The matrix E has two constraints. The first is 2EETE−tr(EET )E = 0 and the second is det(E) =
0 because E is rank 2. Consequently, two of the singular values of E are one and the third is zero.

E provides a similar relationship between points as F, but E operates under the assumption of
camera-normalized coordinates where p̂ = K−1p. The epipolar constraint (Eq. (5)) becomes

p̂T
2 Ep̂1 = 0 (9)

when the essential matrix is used. Eq. (9) can be solved for E using the same general concept as
the 8-point method. Solving for E is typically called the 5-point method because it only requires
five points due to E having only five degrees of freedom. Nister (2004);17 Hondong and Hartley
(2006);18 and Kukelova et al. (2009)19 are examples of solutions to this problem with additional
consideration given to constraints and robustness.
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Recovering the Camera Matrices

Once F or E is estimated, it is possible to determine R and t using it and the pairs of p. While it is
possible to retrieve R and t directly from F, solutions retain a projective ambiguity because F is not
projective invariant.16 However, E only has an affine ambiguity and there are four possible solutions
based on variants of R and t and the true solution can be determined from the 2D measurements.
It is common to use a calibrated camera, meaning the Kj matrices are already known. Therefore,
even if F is computed, it is assumed in this work that E is then computed from F using Eq. (8).
The method for computing R and t from E and a set of corresponding 2D points is derived in Ch.
9 of Multiple View Geometry16 and in Nister (2004)17 but the final, relevant steps are summarized
here for later comparison and manipulation.

Four possible camera projection matrices (M2 = K2[R | t]) are comprised of the combinations
of two possible R matrices and two possible t vectors based on SVD(E) = Udiag(1, 1, 0)VT . The
possible values of R are

R = UWVT or UWTVT (10)

where

W =

0 −1 0
1 0 0
0 0 1

 . (11)

The two possible values of t are ±u3 where u3 is the last column of U. Note that scale is not
recovered and ∥t∥ = 1. The true M2 is determined by the chirality constraint: if a point is visible,
it must lie in front of the camera.20 Thus, M1 from Eq. (3) can be used with each possible M2

to perform triangulation (see Hartley and Zisserman (2003)16 or Henry and Christian (2022)21) on
the set of all paired p and obtain estimates for the respective P values. The true M2 will have the
highest number of P estimates in front of the camera (P will have a positive z-value).

Robust Structure from Motion

The SfM methods discussed so far in this section are not typically used on their own. They are
often incorporated as the model of a maximum likelihood estimator sample consensus (MLESAC)
algorithm and they are typically part of a larger shape, pose, or state estimation architecture.

Feature detection and tracking is never perfect, meaning there are always outliers and, even when
matched correctly, the 2D points may not be exact.22–24 The SVD method for recovering F or E
can be erroneous if there are deviations from the ground truth. Therefore, the 8-point and 5-point
algorithms are almost always employed as the model for MLESAC with the symmetric epipolar
distance or the Sampson distance used as the error metric. While MLESAC is a general outlier re-
jection algorithm, the authors of the original paper, Torr and Zisserman (2000),25 explicitly describe
its use for estimating image geometry. The symmetric epipolar distance and the Sampson distance
are variations of the reprojection error; Fathy et al. (2011)26 evaluates various error metrics for
estimating F.

SfM can be included in a shape, pose, or state estimation architecture that falls under the umbrella
of visual simultaneous localization and mapping (visual SLAM). There are two common visual SfM
frameworks: the filter-based approach and the factor-graph (or key-frame) approach.14 In the filter-
based approach, SfM is used to initialize part of an extended or unscented Kalman filter’s state
vector with the camera pose and 3D points, then the 2D points are used as measurement inputs
with a variation of Eqs. (1) and (2) as the measurement model.4, 5, 27 This can achieve real-time
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performance at the cost of accuracy when compared to the factor-graph approach.14 The factor-
graph approach can be performed incrementally or in large batches (globally) where the scene is
first initialized using SfM on two images. Additional images are incorporated using perspective-n-
point solvers on the reconstructed scene and 2D points; then the overall scene is optimized using
bundle adjustment.7–9, 13 This is the more popular approach when computation time or power is less
of a concern.14

ROTATION-INFORMED STRUCTURE FROM MOTION

The mathematical preliminaries behind basic SfM have been covered and the derivation of RISfM
will be performed in this section. RISfM begins similar to the 5-point algorithm but with a modified
epipolar constraint. First, Eqs. (8) and (9) are combined as

p̂T
2 [t]×Rp̂1 = 0. (12)

Next, expand Eq. (12) and collect the coefficients of the components of t such that [Cx Cy Cz]t = 0.
These coefficients are

Cx = R21û2 +R22v̂2 +R23 −R31v̂1û2 −R32v̂1v̂2 −R33v̂1 (13)

Cy = −R11û2 −R12v̂2 −R13 +R31û1û2 +R32û1v̂2 +R33û1 (14)

Cz = R11v̂1û2 +R12v̂1v̂2 +R13v̂1 −R21û1û2 −R22û1v̂2 −R23û1 (15)

where the subscript indices ab of Rab denote the corresponding entry of R and the camera-normalized
point from image j is represented as p̂j = [ûj v̂j 1]

T .

Finally, vertically stack the coefficients ([Cx,i Cy,i Cz,i] ∀i ∈ [1, N ]) formed by each pair of
correlated 2D measurements into one measurement matrix

CR =

Cx,1 Cy,1 Cz,1

...
Cx,N Cy,N Cz,N

 . (16)

The linear equation CRt = 0N×1 can be solved for t using SVD, like in the 8-point and 5-point
algorithms. This also enforces the constraint that ∥t∥ = 1, meaning t only has two degrees of
freedom and neither scale nor sign is recovered. As a result of t having 2 degrees of freedom, only
two pairs of image points are necessary. Once t is computed, the essential matrix is easily computed
using Eq. (8).

Now the camera projection matrix can be recovered, but RISfM allows the computation cost of
the R and t recovery process described previously to be significantly reduced by two aspects. First,
because E is already decomposed into t and R, SVD does not need to be used to obtain them
from E. This reduces the linear algebra overhead per iteration. Second, knowing R means two of
the four possible affine transformations can be eliminated. This cuts the number of triangulation
computations in half. Therefore, M2 = K2[R | t] or K2[R | − t] and the true M2 is found by
checking the chirality constraint of both as described in the previous section.

RISfM can replace the 8-point or 5-point algorithm in any factor-graph architecture and is, in
fact, what HSfM does.13 However, HSfM also estimates the rotation of the camera and has not been
evaluated for when rotation measurements have been provided instead. Additionally, RISfM can be
used to initialize a navigation filter for target shape and pose estimation purposes.5, 14, 28 Both of
these use cases are outside the scope of this paper but would be useful avenues for future work.
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Inertial Attitude Measurements

It is important to discuss when RISfM is possible to use based on the rotation measurements
provided. Spacecraft attitude measurements are typically taken in the inertial frame I so the rotation
measurements available are RCj

I . It is imperative that P is constant in W or triangulation (which is
the final step of SfM and RISfM) will not work.15 The points on the surface of the target P move in
the inertial frame with the rotation of the target. Therefore, if W = C1, the rotation of the points in
the inertial frame between images must be accounted for when using inertial attitude measurements.
To do so, the rotation used in Eq. (3) for SfM and RISfM is defined as

R
Cj

C1
= R

Cj

I RI
B(j)R

B
I (1)R

I
C1
, (17)

where RI
B(j) is the rotation from a target body-fixed frame B to the inertial frame I at the time

when image j is taken. Baldini et al. (2018)29 provides an in-depth derivation of Eq. (17).

Given R
Cj
I measurements, there are three cases where R

Cj
C1

can be calculated for use in RISfM.
First, images are taken at arbitrary time steps and the target is not moving in the inertial frame.
Second, there is a single camera taking sequential images of a moving target but RI

B(j) is known or
easily estimated (e.g. a cooperative target1, 30). Third, there are two or more cameras taking images
simultaneously such that RI

B(j) = RI
B(1). The third case is the only viable option for spacecraft

rendezvous with an unknown, noncooperative target, which necessitates the use of a distributed
space system or binocular camera.

PERFORMANCE EVALUATION

RISfM is evaluated in three Monte Carlo simulations. First is a comparison between the normal-
ized 8-point algorithm, the 5-point algorithm, and RISfM with respect to relative geometry. Second
tests the robustness of RISfM with respect to pixel noise and attitude jitter. Third assesses the per-
formance of RISfM with respect to relative geometry when three different keypoint descriptors are
used on synthetic images.

Simulation Setup

All three simulations use synthetic images of a 1.48m width spacecraft, Tango from the PRISMA
mission,30 from two cameras. The cameras are both modeled as a Grasshopper331 with f =
17.5mm, which is the same camera used in Dennison and D’Amico (2023)6 and Park et al. (2022).32

The relative geometry used for all simulations is illustrated in Figure 1. Two cameras are pointed di-
rectly at Tango’s center of mass, have an angular separation β between each other, and are the same
distance d from Tango. The canonical camera pose components R and t are also illustrated. The
inertial frame is represented so show that Tango and the two cameras are fixed in I at the moment
the two images are taken. Without loss of generality, I can be positioned and oriented anywhere in
the scene with respect to C1 and C2.

A noisy inertial attitude measurement R̃
Cj
I for each camera is assumed known. To represent

these, jitter is applied to the true attitude of each camera using a 3-2-1 rotation,11

R̃
Cj

I = R1

(
N

(
0, (0.5σJ)

2
))

R2

(
N

(
0, (0.5σJ)

2
))

R3

(
N

(
0, σ2

J

))
R

Cj

I , (18)

where R1, R2, and R3, are x-, y-, and z-axis rotations, respectively. N
(
0, σ2

)
represents a sample

from a normal distribution with a mean of zero and standard deviation of σ. Unless otherwise
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Figure 1: The relative geometry between two synchronized cameras and the target, Tango.

stated, σJ = 120 arcsec. All simulations assume synchronized cameras so RI
B(1) = RI

B(2) and
R = R̃

C2
I R̃I

C1
from Eq. (17). This is the same relative geometry setup used in Dennison and

D’Amico (2023)6 and the reader is referred to that paper for further details.

In each simulation, two parameters are varied and the results are averaged over twenty samples
for each parameter pair where Tango’s attitude (RI

B) and the lighting direction are randomized.
The first and third simulation vary β and d while the second simulation varies the pixel noise (σp)
and σJ . Furthermore, the 3D points are randomly sampled from the target’s 3D model in the first
two simulations. Pixel measurements are modeled as 2D projections of the points with σp = 2px
standard deviation Gaussian white noise added. In the third simulation, the pixel measurements are
centers of the keypoints detected in synthetic images and the ground truth 3D points are the centers
ray-traced through Tango’s 3D model.22 The simulation setup is summarized in Table 1.

Table 1: Variables and measurement sources for the three simulations.

Simulation Variables 3D Points P 2D Measurements p

1 β and d Model Samples Projected Points
2 σJ and σp Model Samples Projected Points
3 β and d Ray-Traced Centers Keypoint Centers

Each synthetic image is corrupted with Gaussian white noise with a standard deviation of 0.0022,
Gaussian blur with standard deviation of 0.8, and salt and pepper noise with a standard deviation
of 0.001. These parameters are chosen as representative noise values from various studies.33, 34 A
median filter and a Wiener filter are applied to each image to de-noise and aid keypoint detection
and matching. Keypoints are matched between images using their feature descriptors only. Example
images before de-noising are shown in Figure 2; note that the white pixels in the background are
salt and pepper noise, not stars.
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Results and Discussion

Figure 2 shows a RISfM sample case where β = 20°, d = 15.8 m, and σJ = 120 arcsec. The
zoomed-in, synthetic images from both cameras are displayed in the top row with the detected and
matched ORB points overlaid. The bottom left corner shows Tango’s 3D model along with the ray-
traced points (green circles) and RISfM-estimated 3D points (red crosses) multiplied by their true
scale. Finally, the bottom right corner shows the entire scene to provide scale perspective in the X-Z
plane of the C1 frame. Camera 1 is indicated in blue and is, by definition of C1, placed at the origin
of C1 with its boresight aligned with the Z-axis. Camera 2’s true pose is indicated in black while
the RISfM-estimated pose is indicated in red. In this example, the root mean square error (RMSE)
in 3D reconstruction is δP = 13.25 cm and translation error is δt = 15.59 cm.

Figure 2: An example of RISfM estimation using ORB descriptors on synthetic images.

Simulation 1. Figure 3 shows the performance of the two traditional SfM methods compared to
RISfM for varying relative geometry parameters: angular separation between cameras and distance
from the target. All three methods are implemented in a MLESAC architecture with Sampson
distance as the error metric. For each angular separation and target distance pair, the color represents
δP between the true 3D points and the estimated 3D points (multiplied by their true scale) of all
points estimated across 20 samples with Tango given a random orientation and lighting condition.

For the entire parameter space, the RISfM error is, on average, 58.3% and 7.06% less than the
error of the normalized 8-point algorithm and 5-point algorithm, respectively. Furthermore, the
respective median of δP is 1.50 m, 1.95 m, and 0.026 m for the normalized 8-point, 5-point, and
RISfM algorithms. Thus, RISfM is able to improve 3D reconstruction performance in general for
targets on the scale of 1.48 m in width that are observed with two synchronized, wide field of
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Figure 3: A comparison between the normalized 8-point algorithm (left), the 5-point algorithm
(middle), and RISfM (right) with respect to relative geometry

view cameras that have associated attitude measurements. One interesting behavior is that RISfM
performance decreases as angular separation increases unlike traditional SfM, meaning traditional
SfM performs better than RISfM when the angular separation is large but the distance to the target
is small.

The region where β ≤ 40° and d ≥ 8 m is of particular interest because it represents the angular
separation limit for keypoint tracking22 and minimum distance for safe observation.32 In this region,
RISfM error is, on average, 77.4% and 59.4% less than the error of the normalized 8-point algorithm
and 5-point algorithm, respectively. Thus, RISfM expands the limits on relative geometry beyond
that of traditional SfM techniques.

Figure 4: Performance of RISfM with respect to measurement noise and jitter. Shown is the RMSE
of the 3D reconstruction (left) and the translation (right) estimates.

Simulation 2. Figure 4 shows the RMSE in 3D point and translation estimation for a Monte
Carlo simulation varying attitude jitter and pixel noise when β = 30° and d = 15 m. Nominal
attitude jitter for a star tracker is around 60 arcsec11 and pixel noise for key point descriptors is
around two to five pixels.4 These results show that RISfM is highly robust to both pixel noise and
attitude jitter as long as the attitude priors used have an error less than approximately 1°.

Simulation 3. In Figure 5, RISfM is evaluated using three different keypoint descriptors (ORB,35

SIFT,36 and SURF37) instead of projections of points sampled from the model. For the entire
parameter space, the median of δP is 19.47 cm, 13.21 cm, and 16.15 cm for ORB, SIFT, and
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Figure 5: Performance of RISfM using keypoint descriptors on synthetic images of Tango with
respect to relative geometry parameters. The individual plots use ORB (left), SIFT (middle), and
SURF (right).

SURF, respectively. Usually space missions will include state estimation-based outlier rejection in
MLESAC so the actual performance is expected to be better than the results shown.4, 25

As the angular separation increases, matching performance decreases because the feature de-
scriptors are not projective invariant. This concurs with previous keypoint descriptor analyses.22, 24

Interestingly, the keypoint descriptors do not appear to have as high of a minimum separation as the
2D projections do in Figure 3. This is likely because the 2D projections always had 2 px standard
deviation of noise applied while the keypoints detected (and thus, the centroid error) change with
the distance to the target. At 1° separation and 30 m to the target, 2 px of error can easily lead to the
image projection rays crossing where they should not.

CONCLUSION

In an effort to overcome the limitations of traditional structure from motion (SfM) techniques, this
paper introduced and evaluated a formulation of SfM that incorporates camera rotation knowledge,
called rotation-informed structure from motion (RISfM). Traditional SfM techniques must be within
a short distance from their target, proportional to the target’s size and angular separation between
images. This makes SfM difficult to perform for small, noncooperative targets while maintaining a
safe operating distance and minimal angular separation for keypoint tracking.

The performance of RISfM was evaluated with respect to relative geometry parameters (distance
to the target and angular separation between cameras) and noise parameters (pixel measurement
and attitude jitter). It was compared to the performance of the two most common SfM techniques:
the normalized 8-point algorithm and the 5-point algorithm. RISfM was shown to have more accu-
rate 3D reconstruction performance than traditional SfM techniques when using two synchronized,
wide field of view cameras that each have an associated inertial attitude measurement from a star
tracker. When angular separation is less than 40° and the distance to a 1.48 m target is greater than
8 m, RISfM 3D reconstruction performance was 59.4% less on average than the best performing
traditional SfM technique (the 5-point algorithm). When RISfM was evaluated using keypoint de-
scriptors on synthetic images of the target spacecraft, the median 3D reconstruction error for ORB
descriptors was 19.47 cm.

In future research, it would be useful to compare RISfM performance to multi-agent or sequen-
tial stereovision as well as a binocular camera system. It is possible that a binocular camera may
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have better performance under some conditions because the cameras are rectified and their poses are
known to the tolerance of manufacturing. Although, the baseline between cameras is limited by the
spacecraft that the binocular camera is mounted on, which limits the performance of stereovision in
the presence of noise. Furthermore, additional research will be needed to investigate the robustness
of RISfM for initializing a state estimation architecture, especially in terms of image synchroniza-
tion and the accuracy of attitude priors. However, the simulations in this paper show that RISfM
is robust with respect to star-tracker noise tolerances and keypoint descriptors, making it promising
for initializing spacecraft navigation filters.
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