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This work introduces a novel approach to formation flying by extending d¥esg®sl continuous thrust trajectory desi

methods to the relative motion of two spacecraft. @kganding capabilities of high specific impulsiectric propulsin

systems and mutgatelliteformationspose challenges for mission planners which are hereby addressed with a geom
intuitive, semianalytical solution to the lowhrust problem. Beginning with the equations of relative motion of

spacecraftan unperturbed chief and a continuouisusting deputy, a thrust profile is constructed which transforms
equations into a form that is solved analytically. The resutetagivetrajectories are the family of sinusoidal spirabjch

provide divesity for design and optimization based upon a single thrust parai@éisedform expressions are derived fi
the trajectory shape and tiroéflight corresponding to twprescribedelative velocity behaviors. A novel patchepirals

trajectory design ahoptimization method is developed and applied to the example of a servicer rtosgewstationary
earth orbiffor direct cost comparison of lethrust and impulsiwhrust architectures.

Key Words:

Orbital Rendezvous & Proximity Operatigi®rmationFlying & Satellite Constellations, Trajectory Design & Optimization

Nomenclature

Vectors
|

Parameters
£
i

Subscriptsand

0

A
Q
(@

Su

Position from central body
Thrust per unit mass
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Position of deputy from chief
Relative velocityin rotatingRTN frame
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Angular velocity ofRTN framein IJK

Chief mean motion

Radial distance to central body
Projection of “lonto "I of chief
Time

Projection of “lonto
Speed in inertial frame
Time of flight

Deputy separation from chief

Deputy speedelative to chiefn RTN
Deputy flight path angle iRTN
Deputy azimutirom chief radial
Change in inertial velocitylue to thrust
Gravity parameter of central body
Thrust parameter
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"Q : Final
‘00 ( : Derivativein inertial referenceframe
'Y"Y0 : Derivative inchiefts rotating RTNrame
a : Minimum or maximum
i :  Radialmeasuref vector
o] . Transverseneasure of vector

After patch
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1. Introduction

The next generation of spaeaft architectureswill be
characterized by its increasetilization of distributed space
systems andow-thrust, electric propulsion systems. To date
these concepts have seen limited, but remarkabigice.The
successful demonstration of autonomous formation flying in
missions such as GRACETanDEM-X,? and PRISMA has
opened the door to advanced mission concepts including
distributed occulter/telescopes andanbit satellite servicing.
Meanwhile, the development of continuous Jdwust
propulsion systems for interplanetary protsgh as Deep
Spacel® and Dawf hasstimulatedthe widespread adoption
of ion and hall thrusters for satellitstationkeeping? The
intersection of these trends creates a problem for mission
plannes that has received little attention to date: continuous,
low-thrust control of spacecraft relative motion. To address the
issue, this work adapts and applies sHapsed trajectory
design methods to the relative motion of two spacecraft.

Missions invoVving formation flying and rendezvous have
historically employed chemical rockets and eglk thrusters
for maneuveringFor satellite applications, these propulsion
systems can produagp to 100 Nof thrustand achieve the
required maneuvers® over a spa of a few secondd.



Becausst is muchshorterthan the orbital period, i finite This paper is organized o threeparts.Section 2presents
timespan may be neglected and th@neuveapproximated as  theoretical developments, starting with the equations of relative
impulsivefor design purposeglectric propulsion systems, on motion and derivation of he sinusoidal spirals. Explicit
the other hand, produce thrsigin the order of 1§. to 1 N expressions for time of flight are presented for each of the
and must operate continuously for a large portion ofotftoé relative velocity control schemesconsidered. Next, wo
to achieve the requiredw.” The tradeoff is thathe specific  strategies for patchintpgetherrelative spiral trajectorieare
impulse (Isp) realized by electric propulsion systems can range&lescribed in section. Finally, these sategies are applied to
from 1500 to 5000 s, an order of nmitgde improvement over the example problem of a servicer spacecraft visiting a target in
the 150 to 300 s attainable with chemical rockets.this fuel geostationary earth orbit (GE®) section 4
efficiency and their compact naturelearic propulsion
systems are particularly valuable to the growing field of micro 2. Theoretical Development
and nanosatellites.

The study of low-thrust relative motion began with 2.1. Equations of Relative Motion
investigations in optimal rendezvousby Lembeck and The relative motion of two spacecraft orbiting a calibody
Prussing? Carter!? and Guelman and AleshiA.Based onthe is governed by the difference of their respective fundamental
primer vector theory of LawdéeR, their studies examine orbital differential equations as
rendezvous with unbounded thrust, bounded thrust, and 0 . .
constrained approach directiorrespectively. Lowthrust — by by =Ty =Ty Ty Ty @
formation control laws based on Lyapunov theory were
introducedby de Queiroz et &P and Schaub et & based on  where "I, and "}, are the chief and deputy position vectors
cartesian and mean orbit element state representationsrom the central bodyrespectivelyand "Iy and "I+ are their
respectively.These control laws drive the formation toward a thrust vectorsThe difference in absolutposition vectors of
prescribed relative trajectory, obtained through a separatehief and deputyn Eq. (1) is equal to the relative position

treatment of the guidance problefhe NetSat denmstration vector lillustrated inFig. 1. Making the substitutiorily
mission, which consistof a formation of four nanosatellites "I “lin the above equation leads to
using electric propulsion, hggompted new research this "0 | | |
16) ; ; R "H "H ., “
area:? In particular, Steindorf et al. developed a controller for — — ly "Iy 2
(0] i Aly ;3

this formation using a reference gower based on relative
orbit elements? In the latter approach, the guidance and The relative velocity irFig. 1 is defined as the time derivative
control problems are merged into a pptanning problem in  of the relative position vector “lwith respect to theotating
the relative orbit elements space. Bevilacqua and Lovell preser®TN frame of the chief which may be expressed
an analytical approach to sgacaft relative guidance with mathematically as

constant thrust based on relative orbit elements and input w0
shaping, a concept adapted from flexible structure control % " 3
theory® 0

Due to the many degrees of freedom introduced byBy converting the derivatives in E@2) from | to L using the
continuous thrustlow-thrug trajectory designis generally ~ angular velocity — and applying the definition of relative
formulated as a nonlinear optimization probleNumerical velocity, thesecondorderordinary differential equatiorQDE)
solvers may be highly sensitive to the search parameters an EQ.(2) becomes a system of firstder ODEs given b¥q.
having a good initial guess is therefore crucial. SHezgeed ~ (3) and
methods provide one route to finding aritial guess, by
analytically studying the thrust profile required to follow a
prescibed trajectory. The first instance of this method was the
study of the logarithmic spiralas a lowthrust, absolute
trajectory by Baconin 195919 Other authors extended the
method for the absolute motion of a single spacecraft with more
general and useful shapes, such as the exponential sinusoid
with variable flight path angl&) More recently, Roa showed
that the thrust requirelgly the logarithmic spiral trajectory can
be extended to a family of generalized logarithmic spffals

As a first application of shageased methods to formation
flying, this work begins with a development of the equations of

relative motim that parallels the classical Hilllohessy (
Wiltshire (HCW) theory? The dynamics of the relative \ > f

==}
-
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-

motion problem differ from those of the absolute mosoich
that one may treat the trajectory shape and velocity separately _

A sinusoida spiral shape is adopted and two simple strategies Fig. 1. Geometry of rglauve mougn and definition of polar coordi
. . . systems used to describe the motion of a deputy spacecraft (red)
for controlling relative velocity are presented.

to a chief (geen).



This representation is useful for describihgh e deputy

Cc

,—9 " 2 I co i "l absolute state without explicit dependence on either the state of
Qo Qo W ke 4 the chief or an inertialkjixed basis.
T & E Ty Ty 2.2. Relative Spiral Geometry
By prescribing the dépnusicly 6s

Equations(3) and (4) provide the most general description of 45 way that Eqs(5) through(8) may be combined to eliminate
the relative motion of the deputy with respect to the chief, f;nctional dependencies, one may obtain a cldsed
withoutex p | i cit dependence on t k&utio ®iHé frafebtdyindre f P b ¥ Bréme Rdefolne OF
an inertial reference framéf. the chief is in an unperturbed  cngice of state representation, the trajectory shape is controlled
circular orbit,the direction of is constantjts magnitude is by Eq. (8) with explicit dependence only on the
€, and"ly . After adopting this assumption there is no component of thrust. The motion of the deputy spacecraft on
further ned to distinguistbetween chief and deputy thruste this trajectory is dictad by Eq.(7) with explicit dependence
the deputyds t hr ulshencefarth. | be ohied & 60Fn&)Henttonhru§t_S

To convert Eqs(3) and(4) from vector form tascalar brm In principle, a thrust profile could be derived to satisfy any
suitable for shapbased analysisthe polar coordinate gesjred trajectory shape. This investigation folldiesinverse
representations of the relative stdltastratedin Fig. 1 are approach, precribing a thrust profile that renders the governing
introduced T h e  d erelatie ydsition is characterized by equations in solvable form while retainisglution diversityor
1 1 & %andthe angle] — which is measured frorfi to design and optimizationThe thrust profile was chosen to

Twith sense opposite to fpfhése aprBporfohdity betén ardd & |—confrdlidtiy ar
momentu~m vectorThe relative velocity is characterized by the thrustparameter, . Examination of Eq(8) leads to the
1 0 A& % andthe relatjve flight path angle [, which is required thrust profile
measured from to ‘lwith sense parl | e | to the chiefbs .
angular velocity vectorTo handle motion out of the plane of I § 10, p 1_‘:’,5\ Mg ¢t (1)
the chiefdés orbit, an additional palrcré]ok/&.l.]%ﬁ(gelbre%_or posi ti

velocity measures could be introduced. For the purposes of this
di scussi on, onl yrbitplarte is considéred. tEquatiorn(IL)i destribes a sliding mode control law, with one
Taking the "I and components of E((3) leads to the  part canceling the plant and another imposing the desired
scalar differential equations that govern the tiemelution of dynamics Because all terms iq. (11) scale as¢ | i, the
therelativeposition variables as maximumcontrol thrustwith separationsmallerthan 10 km
111 OET ®) will vary from mN/kg in LEO to uN/kg in GEO. This thrust
range overlaps with that achievable by current electric
10 . propulsion systems, so the control law selectedatizable
1 _7_‘|A na (6) Using the thrust profile from Eq11) in Eq.(8), one obtains
an expression for [ in terms of] —and initial conditions.
Combining this relationship with Eq) and(6) leads to the
closed form shution for the trajectory shape

Next, taking the °1 and components of Eq.(4),
expanding £y % in powers of{ ¥ , and dropping
higherorder terms for small segions leads tthe equations

10 ok 0BT 1 ATO-"11 " 0 11 “AM‘]_‘I]_OA” - (12)
— , T
10— ot AN ANO- o ATD. T —1—
GE1 U "It The geometric parametersi and | — have been

governing the riative velocity variablesThesystem of ODEs ~ Introduced to eliminate explicit depgence on the initial
in Egs. (5) through (8) is mathematically equivalent to the conditions. These @untities may be obtained from the state

HCWequations in the chiefos ‘@japlgsatanypgnjoghetrajectory using

The relative statesioften described in terms of a cartesian 1 1 AT ¢ (13)
system centered on the chief, WiRh T, and Ncoordinate axes
i n the c htiamsvegesandr oatd-plamd directions T T (14)

respectively Such arepresentation is used throughout the ,
discussion to visualize rdlee trajectories. The'Y and “Y

. : . Equation (12) describesthe family of sinusoidal spirals
coordinatesf this systenmare related to the polar coordinates q (12) y pira

whose diversity is sampled Fig. 2. For , i, the relative

of Fig. 1 by flight path angle is constant and the deputy follows either a
Y o1 AT O— 9) logarithmic spiralor a circular arc ceared on the chiefThe
B L trajectory spirals outward if [ 71 and inward if] [ TU
Yoo 1 OB I— (10 For , T, 1 [ decreases as —increasesthe trajectory
A similar set of axes can be attached to the deputy and used &plution is bounded,and 11  represerst the maximum

describe its inertial velocity in terms of components along basigséparation between chiefand depéiyr , T, [ increases
vectors aligned with the radial and transverse coordinate axedVith 1 ——the solution is unbounde@ndi i defines the
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Fig. 2. Geometry of relative spiral trajectory solutidios select value
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minimum separation. Note that altgh the mathematical
solution extends to infinityit is only valid in the region of
validity of Egs.(7) and(8) and the trajectory will be subject to
the thrust limitations of the propulsion systerhe polar angle

1 —isrestricted to the range— “ ¥¢S S so for, between

-0.5 and 0.5 the trajectory fyllencirclesthe chief. For,
outside of this range, the trajectory either converges to the chief
or diverges to infinity without crossing itself.

As Fig. 2 illustrates, the family of sinusoidal spirals includes
several shags familiar from classical geomefiy These
include the logarithmic spiral and circle corresponding to
1 in Fig. 2(a). The spiral with, T® in Fig. 2(b) is a
cardioid while that with, 1@ in Fig. 2(c) is a parabola
with the chief on the directrixig. 2(d) shows spirals for more
extreme values of the thrust paeter, including atraightline
for ,  p, a rectangular hyperbola centered on the cfuef
, G, acircle passing through the chief for  p, andthe
Lemniscate of Bernoulfor .

2.3. Solution Dynamics

Motion along the trajectory isdescribedby 1 0 and
thereforegoverned by Eq7) with explicit depenénceonly on
thetangential component difirust.Because tis componenis
orthogonal to the thrust component used to enforce the
trajectory shape, it intrattes an additional degree of freedom
to the analysis. For theurrent studytwo relative velocity
control schemeareconsideredmaintaining a constant ratio of
1 0to7 i and maintaining a constant uThe first is based on
the result of linear retave motion theory that the relative speed
varies in proportion to the separation, and reduces the extent to
which the prescribed thrust mugtposethe natural dynamics.
The secondschemeexercises greater control effort to enable
behaviors not achievabley the first. These controkckemes
were selected for their simplicity dmitility, not necessarily for
optimality nor to represent the breadth of feasible strategies.
Above all they provide intuitionfor applyingthe analytical
approachin the discussio to follow.

2.3.1. Constant# J¢ »

The requirement for maintaining a constant rati§ obto
1 1isthat
170 10,
Qo1 i T
Substitution of Eqg5) and(7) into Eq.(15) and applying initial
conditions leads to the’l measure of thrust

(15

i J0
It 1 9 U]TO EIr
ot 1 IATTGOEHIT 1 —

The structure of Eq(16) parallels that of Eq(11), with one
term to cancel the plant dynamics and another to impose the
desired motion. Both terms are comgdale in magnitude and
whether they add or subtract depends upon the valuesf of
and] —at a given time.

Thus far, the equations of motion have been solved by
replacing time withl —as the independent variable. However,
a sense of time is required for trajectory design. The time of
flight is obtained by integration dtq. (6) using the known
dependences ¢f )7 i and| [ on] -8This leads to the

(16)



analytical expression

= 11— 3.1. Common Reference Orbit
AT , T Consider first the scenario of the deputy spacecraft
YOO _ .. (17) performing lowthrust maneuvers in the vicinity ofcaief that
L ii PioElr p . n is ona circularabsoluteorbit. In a practical formatiofiying

VANV mission, tke chiefmight be a coopeative or norcooperative

Time of flight takes on a different form based on whether spgcecraft or might represent the_geometric cent_er or reference

is constant or variable, i.e. whetheris zero or notin the  PCintofaformation. If the separation between chief and deputy
former case, the deputyos mgqsa}p@%rlb%d@%ehbpunq, prae pgr%o?ogtpe rrp_tbor%mugo ns
angular velocity andthe time of flight is simply the angular have a thrust parameter T Similarly, if _the separation has
separatiordivided by this constant a lower bound, some portion of the motion must have Tt

2.32. Constant# o These spirals must be patched together to meet the trajectory
requirementsAt the patch pointhe position and velocity state

To maintain a constant relative velocity, the control thrust ) . ;
of thedeputy relative to the chief must matets described by

needs only compensate fttre component of the differential

gravitationalforcethat is tangential to the curverom Eq.(7), 10 91
the resulting thrust profile in thel direction is given by 1 —
R ot | AITGORIT 1 — (18) | . (21
70 70

and follows the same¢ | i scaling as the thrust profiles
considered previously. e

Again, the dynamics governing —in Eqg. (6) can be The conditions in Eg.(21) highlight a fundamental
directly integrated in terms of the trajectory shape in(Eg) distinction between the methods of gietd conics familiar
and known behavior ¢f | and| Uto obtain the time of flight  from classical orbital mechanics and the method of patched
Becausg Uis constant, time of flight is proportional to the spirals being described. If the thrust duration is short compared
path length. Thisnaybe understood geometrically for ttveo to the orbital period, its effect on the motion can be treated as
, Tt cases For a circulararc, it is the subtendedingle impulsive for design purposes. Discontinegtiin the velocity
divided by the angular velocityor a logarithmicspiral, it is magnitude and direction result and only the position remains
the changein separation divided by the constant measure ofconstant across the patéhencontinuous lowthrustis used
velocitytoward or away from the chi€fhese relationships are the shorduration assumption is inherently invalid. Thus, both

expressed mathematically as position and velocity mugte continuous at a gat point.Only
RE thethrust may have a discontinujtyutit will not be animpulse.
.’ﬁTq — ] — 17 T 3.2. Distinct Reference Orbits
Y60 o1 (19 With the preceding formulation, the range of motion is
R 1M T restricted to the trajectories defined by ELR) over a domain
v 10 OEl limited by the propulsion syst

For the general case of T, the path length integral is more Prescribedby Egs. (11), (16), and (18). The scope may be
complicated and time of flight must be expressed in terms ofdramatically expanded bgxploiting the notion that the chief

the Gaus$iypergeometric function’O (fodpip as may simply be a reference point and not a physical gtaect
. need not be the same reference point before and after patching.
P 5 g . .. . o . . : . .
“¥ "0 E’If OE O Em ﬂl’tl’pE‘]l F (20) With .'[hIS mtroductlop of a thyal chief, the relag spiral
10 S ) patching can be applied to relative or absolute orbit cofftrol.

. . . . . The conditions in Eq(21) are void without a common
For many special cases, including the classical geom(_:‘mcreference ointand a new set of patching conditions must be
figures decribed in section 2.2 above, Eg0) reduces to more P P g

- . . . . . introduced These follow fromcontinuity of the absolute
familiar mathematical functions. A list sfich casefs omitted osition andinertial velocity of the deputvacross the patc
here for brevity but may be found in standard handbooks oip y putya P

mathematical functions such Abramowitz and Stequf Expressing the inertial velocity in terms of its radial and
9 transverse me a s u r e shasis, nthe newe de

. nstraints ar
3. Patched Spirals constraints are

In order to meet demanding mission specifications, multiple —  —

sinusoidal spiral can be patched together to forms@itable b o (22)
trajectory For formation flying missions, it is expected that the
pathed trajectories share a common reference pointeMery 0 0

it may be desirable to patch together spiral trajectories withnese quantities are related to the relative motion variables in
reference to different points to add a further degree of freedonyector form by

to the trajectory design space. These problemaddressed in

succasion. "y Ty (23



T | 24) final statesi.e. patching between apses of the absolute orbit.
For most scenarios relevatd relative spiral patchingthe
To unpack these equationtske ther dot producs with the  radial velocities will be small and these resultdi piovide a
c hi élfareds basis vectorsThe resulting scalar conditions good starting point for numerical solution of the full system.

are Settingb  to 0in Eq.(29) with 1 0 Tt leads to
i ATS — 1 1 ANO— (29 OBl —
REE-L @
i OEF+ — 1 I0BT— (26)
Substitutingthis expression foff iin Eq. (31) and applying
iB b1 IOET—0 1 1 iATIO— 7 trigonometric identities, one finds that
| OB — &1 OET— L OBE (34)
[ ORI
‘B o i 71 IANNOG— v 1 IOET— The sign in Eq(34) is determined byOE €1 1, wherei
! Pe o1 RTIO ] — (28 is the state0 or "Qcorresponding t6 +—% [, andi in the
£ AT O— equation, andQis the other boundary statBubstituting] i

from Eqg.(33) andi from Eq.(34) into Eq. (30), solving for
where Eqs(25) and(26) have been used eliminate— and the constant © and comparingt the initial and final states
— from Egs.(27) and (28). Although cumbersome in éir leadsto
presentform, Egs. (27) and (28) are linear in the inertial

velocity measuresSolving this system of equatiorfer the £ T (35)
inertial velocity measures yields the cleaner relationships
01 10 OBl ] —1 OET (29) This re_markably simple expressionatds the unknown mean _
motion of the reference orbit
0 1 el T UATIOr 1 —1 ANO (30 inertial velocity measures and orbit radibhe altitude of the

) ) ) reference orbiti is calculated from¢ as ‘¥ .
Equations (25), (26), (29), a_nd (30) _constltute the mapping Expressiongor | 0may be found fronEgs. (30) and(35) at
betwggnab_solute and_ rela‘tlve motion needed to enforce theeither of the boundary states as
conditions in Eq(22) giveni and — .

In section4.1, a virtual chief is introducetb patchrelative 70 € 0s (36)
spiralsbetween initial and finastateswith known orbit radii No restrictions were placed on the relative spiral shape i

and inertial velocity vectorsRather than matching relative Egs.(33) through(36). These equations follow from the choice
states at a common absolute state, this boundsue problem ¢ constant  Ucontrol and the relative state variables chosen.

requires finding the relative states and common reference poiny; tnis stage, the relative spiral geometry must be indok
for given initial and final absolute state$he equations ™| I is constantDividing Eq. (34) at the final state by

required to define the relative spiral in this variant of the jiseif at the initial state produces a relation between and
problem are now derived. 1 —as

First, — and — may be eliminateffom the parameter set . R
by adding the squares &fs.(25) and(26) to obtain ' ORH 37
X i i OE
i1 11 criAiiG— (31) E
The variables —, 1 [, 11, and|1 can all be related to

The |.n|t|alland final relative states, .togetht'-:‘r witth th.en 1 — from Eqs.(37), (34), and(33) at the initial and final states,
constitutenine unknowns to be determined. Six constraints arerespectively By inserting theseelationshipsinto the, T

provided by Eqgs(29), (30), and (31) at thetwo boundary  yaiectory shapexpressiorin Eq. (32), the system is reduced
conditions. Two additional constraints are provided by the to solvingfor 1 — in thesingle transcendental equation

velocity profile and the linear relationship betweerf and

1 —Fhefinal constraint is supplied bytheitgctory shap&om ’I‘L 0 El[ 17 AGB— 1— OATT (39
Eq.(12). In terms of the relevant variablekis becomes 11 oBl— 171
. JAop— 17— O0Alr , m For, T [ differs atthe initial and final states acannot
T S 32 be eliminated from Eq34) in the crivation of Eq(37). The
a oy 'f _'_7 O T systenthereforereduces to solvinfpr the unknown§ — and
w AlNO 7 1 — in thetwo transcendental equations

This nonlinear system must generally be solved numerically
andfor given boundary conditionsay only have solutions for
somerangeof thethrust parameter . However, exact solutions
may be obtainedor constant relative velocity ithe special
case of zero radiatertial velocity componentst the initial and

11 OBlm 1 0Bl Al ~ (39
11" OBkg 11 OEIQ AT 0O

mwoar 1= 11— (40



where] [ is expressed in terms of— usingEq. (34).

eccentricity vector. Because the constanifl i thrust profile

The exact solution for patching a relative spiral trajectory introduced in section 2.3.1 lends itself naturally to continuous

between a givensetdf ,i , 0 ,and0 with 0

0 T is obtained by the following steps. First, is
calculated directly from Eq35) andi from the definition of
¢,and] ufrom Eq.(36) and £. Based on a choice of, either
Eq.(38) is solved iteratively foi — or Eqs.(39) and(40) are
solved simultaneously for — and | —. The remaining
parameters are then obtained from E§3), (34), and(33). If
U orv
an initial guess for numerically solving the full set of
constraints in Eqs(29) through (31) at the initial ad final
states and E{32).

thrust rendezvous from any relative state, this would not add to
the discussion of patchedisgis. In the modified scenario, the
servicer is initially placed in alge passive ellipse around the
target to conduct situational awareness observations, then
transfers to a second passive ellipsactbieveaccuratepose
estimation before performing a rendezvous maneuver or
departing for a new target.

is nonzero, this procedure may be used to find4.1. Formation Establishment

Fig. 3 depicts theapproachand passive ellipse insertion

phase of the sample mission. Tdeputy spacecraft, in this case
the servicer, is initially placed into a nedrcularabsoluteorbit

in the same plane aard approximately 30 km below the

4. Application to GEO Servicer Mission

t ar g et Dhis maymd dcecomplishday a launch vehicle
upper stager througha maneuvesequencéollowing a prior

In this sectiona notional satellite servicing mission scenario mission phase. At the start of the approach scenario, the deputy
developedoy NASA Goddardis analyzed to demonstrate the is 300 km behind thtarget in the alongrack direction. Due to

utility of the relative spiral tjactories®® The mission consists

GEQ, inserting into a static safety ellipse, aegecuting a
rendezvousvith the target to refuetepair, or boost the target
into a dispsal orbt.

This scenarioprovides a practical motivation fothe
assumptions underlying the relative spiral

satellites makes earbit servicing operations to extend
lifetimes and removealebris from this region commercially
attractive. For a general target satellitene cannot assume
cooperativity or functionality and may only attribute
continuousthrust capabilities to the servic@ihe emphasis on
circular reference orbits and planafateve motion iswell-

orbits. Because of the
drag and0 effects are negligible. Fingll the inherently low

mean motion in GEO makeg a prime candidate for

bel

the difference in target and depuggmimajoraxes, Keplerian

of a servicer spacecraft approaching a noncooperative target idrift reduces the alonggack separationover time Once
sufficient anglesonly navigation observations have been
collectedfor the navigation filterto converge athis large
separation, the deputy maneuvers int@aholding orbit 5 km
tAlathiggheghed altituderhe drift is
analytical slower and a more accurate state estimate may be obtained
framework.The high cost of developing and launching GEO before maneuvering into a third holding drbi5 km below the
target.The final maneuveestablishes the formation pjadng

the deputy into a passive eliigal relative orbit with asemi

minor axis of 300 m.

ow ¢t he

The maneuvers in thesequence described above can be

divided betweeriwo distinct tygs.One involves the transfer
between coplanar circular orbits, with a change onlgeimi
suited to the GEO belt, whose members lie in coplanar circulamajor axis. The second involves chagg inboth semimajor
bel t éis arfdiegcantriatyl tni t NIAASA O st hBE@sseaempti €
small separations is valid and perturbations from atmospherienission scenario, these maneuvers are accompligtitd
impulsive thrust.The following discussiorshows how the
analytical techniques developed in section 3.2 may be used to

continuousthrust enhancement of the natural dynamics for plan these maneuvers wittontinuousthrust, relative spiral

time-sensitive operations.

Two modifications are made from the reference mission
scenario for illustrative purposes. Firtihe safety ellipse is
projected onto the targetos
coplanar framework being considered. In a real mission, the
ellipse would be tilted with
so that the servi csethabodhe targedj e
The relative motion ishensafe in the sense that drift of the
ellipse de to a small difference isemimajor axis does not
increase the risk of collision. To achieve this relative state, a
small outof-plane velocity component iseededn the final
insertion maneuver This can be accomplished with minor
adaptatiorof the thrust profile, butontinuousthrust control of
the outof-plane motion is saved for futurdiscussion To
distinguish the closed, elliptical relative trajecéssubject to
natural dynamicfrom the controlled motions being considered,
they will be referred to henceforth as passive ellipses

The final rendezvous and capture phase of the scemgrio
replacedwith transfer from a larger to a smaller passlligpse
around the target equivalent to reducing the relative

trajectories

I P
ogbi t'al% ane to_accommodate
) 300 km
— l\ O _?I_L._.{ ............... +_ ................. _).,+
respect tiqsyhhe targetds orbi
ctory &Sy, not cirsQ, :
i i
® Deputy | 30km |
O Target ‘Y :
----- Holding Orbit i
— Transfer Trajectory :
--- Passive Ellipse <x

Fig. 3.
scenarioin RTN frame of target, includingequence of orbitaising

Formdion establishmenphaseof GEO servicer missic

maneuvers and insertion into a passive ellipse centered on e
transfer trajectories shown may represent continuous;tHovs
maneuvers or Keplerian trajectories between impulsive mane
(e.g. Hohmann transfers).

t



To develop insight for this approach, consider fitsé t 15

transfer between two circular orbité.both chief and deputy al Constant ov
are on circular orbits and the deputy is directly below the chief, e |
the relative velocity in theRTN frame is related to their =
separation by 5" ]
= 11
1O 28 (41) 5 *
c 0.9 B

Because the deputyds orbit i 'S os 1it adva
faster than the chief and the relative velocity is parallel to the 07 ‘

chiefoés velocity vectidand] The r & &% "o fshi E) % et We éh °°
in Eq. (41) also appks to the case when the deputy is directly
above the chief, but the relative velocity is then antiparallel to _ -
the chiefos velocity lustatedt o f°changeneccentricity
schematically inFig. 4. The transfer betwee concentric
circular orbits maytherefore be treatedas a symmetrical
trajectory in the Hill frame of a reference circular orbit midway
between thelepartureand destination orbitslo perform the
maneuver using a relative spiral, one may choose theesinpl
case, T with] [ T, i.e.a circular arc centered on the
reference chief (cFig. 2 andFig. 4). With this choice of thrust
parameter, the separation is constant taedsame result will
be obtained whether the constdnty or constant] @ i
control strategy is adopted

Although the circular arc is the easiest relative spiral

trajectory to understand intuitively, it is not the only solution a 2_0/0 |mprovement '”}w_ ovgr_the, T case may be
spiral for this trasfer and is not necessarily the best. achieved using 1@ pThis minimum represents a balance

Effectively, any spiralthat sweepsat least* radians off between time of flight and trajectory shaping co$isr a

beforereachingan asymptote can be used to accomplish thisSinglepass transferprr values of, demand more cpntrol
maneuver Due tothe rotation of theRTN frame, the simple effort to shape the trajectory, but have shorter 4irgight
geometridntuition used to dedudée initial and final states for due to the shorter pgthngth and cgnstaﬁt v nghe.r va}lues
the 1T case inFig. 4 cannot be readily applied far T of , stretch the relative trajectory in the aletngck diretion,
However, the initial and final flight path angles for this transfer Increasing the flight time and ‘thus the duratlo_n of coptl_nuous
are zero so the simplifieform of the constraintsni Egs. (33) thrust. With the constant o i strategy,there is no distinct

through(40) provide the spiral trajectory solutiorignlike the minimum for L becausf‘he increase in time qf ﬂ'ght 1S
circular arc, the solution for general will have variable] i larger than in the constant ucase and the longer integuat

and the two"It"Hl strateges will not produce the same time dc_;mmates gny’ shaping advantage. As poted atiose,
motion sharp increase irew as , approaches 0.5 is due to the

Solving Egs. (38) through (40) for a range of, values inability of spirals with,  T@® to be tangent to both circular
' orbits. For values of close to O there may be additional

Fig.5. 3-Optimization of transfewith increase isemimajor axis an

allows for optimiation over a variety of parameters, as shown
in Fig. 5 for 3. The vertical axisshows 3w, computedby
integrating the_,-normof the thrustvector "l for the duration
of the transferreferenced tthe value for the 1 caseThe
correspondence of the 1t case forboth control schemes
ensures a common scale factor for the vertical. &g plot
was generated for the transfer between circular orbits 30 km
and 5 km below GE(hut the shape of the curve is not strongly
dependent on the change in altitude so longlashi p .

With the "I £ "HI profile for constant UOfrom section 2.3.2,

T solutions wheh loop around the reference chief multiple times.
P va Vas These multipass solutionsffer no advantagor the transfers
Sv W—?\T‘if being considered because they increase the flight time.
ol | While Fig. 5 considers optimization onlin terms of 3w,
! : o similar plots may be generated for other parameters of interest,
such astime-of-flight or maximum thrustin Fig. 6. The
f nre discontinuities in slope athe maximum thrusvs. , curves
"_'4 e are caused by jumps in thecation of the thrust peakocal
thrust maxima and minima change in size as the thrusteprof
070 varies continuouslywith , . For a given set of boundary
Va0 conditions there will be threshold values ofat which one
& - local maximum replaces another as theoalite maximum,
g do resulting in the slope changes observed in the figkoe.
ov = P or impulsive maneuvers 3@ is the most important cost
consideratiorbecause oits direct relationship to masBue to
Fig. 4. Geometric development of relative spiral transfer bet the high specific impulse of electric propulsion systems,
circular orbits using, T, including relationship between abso propelant mass considerations may be secondditigtd time
and rehtive velocity (left) and the shape of the relative spiral trans and power system constraints which are related to the metrics

the RTN frame of the virtual chief (right).
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Fig. 6. Optimization of time of flight (top) and maximum thrt

magnitude (bottom) for the transfer from a circuebit 5 km below GE!
to another 1.5 km below GEO.

Fig. 7. Geometric developmeiof relative spiral insertion into a pass
ellipse with semiminor axis] i .

velocity of the insertion point in the refereriR&N frame can

be estimated by the difference of the above velocity and the
velocity relative to the target in E42). The initial and final
relative velocities are therefore approximated by

of Fig. 6.

The second type of maneuver the sequencef Fig. 3
involves a changef both semimajor axis and eccentricityf
the semimajor axis of the finalabsoluteorbit matches that of

the target, the result RTN a passive,loelﬂéiﬂpse in the target
frame.For thisanalysisthe insertion point issssumed to be at S (43)

perigee of the final orbit, corresponding to the point of the o, . . . p. .. .

passive ellipse directly below the targét. the linearized | Y EE] LoTe el ¢t gt Tl

relative motion theorythe relative velocity at thgositionson

a passive ellipse dirdgt above and below the cliiis Using the constarit Ustrategy of section 2.3.bne finds that

proportional to the separation according to LRI Tc.j and the _reference point must be l_)el_o_vv the
mean transfer altitudeEquation(43) leads to a contradictiah
170 &1 1 (42 one instead assumes constanffl | so the strategy of section
The difference ofpfc &1 ibetween Egs(41) and (42) 2.3.2 cgr.mot be used to perform the transfih change in
accounts for the excess kinetic energy needed afgqeeto eccentricity . . .
Exact solution for this maneuver with 1 and, T

reach apoege.

The first step in developing a relative spiral trajectory to
accomplish this maneuver the selection of an appropriate
circularreferenceorbit i . When transferring betweebsolute
orbits of the sameeccentricity the midpoint could be used as
reference because Hg1) could be applied to botendpoints.
For the transferinvolving a change ineccenticity, the

can be obtained from the constraints in Eg8) through(40),
respectively. The analoguefeify. 5 for the transfer to a passive
ellipse is shown irFig. 8. The shape of the curve is a strong
function of theratio of 1 i to the radial span of the transfer
3l .As1 1 approaches zero, the final orbit is circularized and

velocities at the boundaries relative toeferenceorbit at the A Zo10

average altitude will not matchFor this fundamentally 141 arar, =050

asymmetric transfer, the reference orbit must be placed below 13} :'Eji'ajgz

the mean altitude to allow fdr Owindup asFig. 7 illustrates 512 &E,A,::tso

This observation isconsistent with theresult in Eq.(35). 2117 arglAry = 2.00

Although the geometry is complicated by the relative dynamics, § e

intuition can be developed lypnsideringvalues of sA 11 Os- atr

close to oneat the boundaries At the initial condition, e 0.9}

relative velociy is approximated by Eq41) with| 1 11 . 08

Similarly, the velocity of the target relative to the reference o e
point at the final condition is approximated By. (41) with 05 04 03 02 01 0 01 02 03 04 05

171 91 911 ,where]i isthesemiminoraxis of thefinal
passive ellipseBecause the mean motions of the target frame Fig.8. aw-optimization of transfewith change irsemimajor ais an
andreferenceRTN frame are equal to a first approximation, the eccentricityof 1 i 7si andconstant 0 control



the shape of the curve iRig. 5 is recovered. As the ratio

o]
o

increases,the local minimum moves toward, T and
ultimately vanishes near 0.73. No singlass tansfers of this
type are possible fori o3 .

The above analyses for the two types of eraising
maneuvers may be directly applied to theetlptic approach

(]
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Thrust ;N/kg
N
o

TN
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o

and passive ellipse insertion phases of the example mission
scenario. For therescribednsertion to a passive ellipse with
300 msemiminor axisfrom a holdingorbit 1.5 kmbelow the 04
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target,1 i 73 & vand the3-minimizing value of,
is 0.38. Using thisvalue for the final maneuver and the
corresponding value of €1 for transfers between holding
orbits,one may simulate thmaneuversequencef Fig. 3. The
resulting trajectory in the RTNoordinates of the target is

031

0.2r

0.1r

M /M (g/kg)

o — ]

T

T

Relative Spiral Trajectory
Hohmann Transfers

shown in Fig. 10, along with the equivalent trajectory 0
accomplished using impulsive Hohmann transfers. This
simulation incluesthe full Keplerian dynamics, but neglsct
perturbations due to thirdody interactions, solar radiation
pressure, geopotential, etcndesassumesoplanar motion with
both the target and defyuinitially on circular orbits. Drift
times were distributed evenly across the threleling orbits,
leading to a total time of 3.3 days to complete the orbit raising
and passive ellipse insertion.

The deputy thrust requirement is showifrig. 9, along with
propellant consumption assuming nominal Isp values of 300 s
and2000s for the impulsiveand continuoushrust scenarios,
respectivelySummary results for eachaneuver are presented
in Tablel. Duein partto kinematic inefficiency, thes cost
for the relative spiral maneuver sequendeigher tharfor the

20

40

60

Time (h)

80

100

Fig. 9. Deputy thrust profile for relative spiral orbiising sequen:
(top) and comparison of propellant consumption schedules for img
and lowthrust trajectories (bottom).

Furthermore, a widely varying thrust profile represents an
inefficient use of the power and propulsion systefihough

the thrust magnitudes ikig. 9 would be feasible for existing
electric propulsion systems, the ordérmagnitude difference

In peak thrust between maneuvers is undesirable. The
discrepancy igaused by the largdifference in transfer sizes.
Because the thrust profiles in E¢1) and(18) scale ast 1
the 25 km orbit raising maneuver requires seven times the

i

impulsive transfersHowever,the higher specific impulse of  Tablel. Performance comparison of impulsiwead continuoushrust
electric propulsion systemsucses theelative spiral trajectory maneuver sequences for GEO servarit raising

to have better performance in terms of propellant mass.

supply

Because propellant mass effectively limits the number of Impulsive Thrust | Low-Thrust Relative Spiral
targets that the deputy spacecraft can visit before retiring or (1sp 300 5) _(ISp 20005)
refueling, the continuouthrust control sategy proposed hasa ~ ianeuver | 3w - Propellant| s  Propellant  Max
large advantage over the use of impulsive maneuvers. (mis)  (mokgsc)) (mis)  (o/kg sfc) T;r/llft
Two importantfactors to considefor the continuousthrust 25 km raise | 0.912 311 2355 120 (t70.29)
trajectory designare the maximum thrust requirednd the 3.5 km raise| 0.128 43 0.328 16.7 9.8
variation of the thrust levelFor electric propulsion syesins, the Ellipse 0.054 19 0.131 6.7 3.9
thrust is directly related to the power required, so the maximum insertion
thrust wi || be | imited by tofae 5 p084C € ¢6372a | 2.gA4S op@AWeE I -
0 M-A\QP O Target
5 ————efr— e Relative Spiral Coast | —|

= Relative Spiral Thrust

10 F . \ - - - -Hohmann Coast —
/E\ AR A Hohmann Burn
-15 - > —
S o ¢
o N |
-20 1
-25 - 2 |
30 0 2 4 e -
| | | |
0 -50 -100 -150

T (km)

Fig. 10. Comparison of lowthrust relative spiral trajectories with impulsitreust Hohmann transfers in RTN coordinates of target for

servcer orbitraising sequence.
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o Equation(45) is the general form of E¢42) and redges to the
Z o | latter when] —is 0 or “ . These equations define the boundary
g ol ] conditions for theformation reconfiguratiorpatched spirals
= problem In this example, the initial ellipse hasamiminor
2r 1 axis of 300 m and the final hasemiminor axis of 50 m.
. ‘ ‘ ‘ . ‘ ‘ For the orbit raisig problem considered above, extensive
0 20 40 60 80 100 120 140 160 use was made of the control strategy driving congtanfrhat
Time (h) control strategy has limited utilitfor the new problem of
Fig. 11. Thrust profile forrelative spiral transfers between equ: patching spirals between concentric passive ellipses To
spaced holding orbits for GEOrsier orbit raising scenario. understand why, consider the depemmeof] Loni iin Eq.

(45). If 7 Uis to remain constant throughout the motion and if
maximum thrst of the subsequent 3.5 km rai3&e holding there can be no discontinuitieslin across the patch points,
orbits selected were based on a reference scenario develop#@en thel 0at departure from the first ellipse musuadthat
under the assumption of impulsive maneuvers, but are noét arrival on the second. Teguare rootermin Eq.(45) varies
critical mission parameters. A relative spiral trajectory with between 2 af — a*“ andl at] — ¢& p “7g for
better continuoushrust peformance may be designed by integer & . Two passive ellipsesanonly contain points with
distributing the orbit raising criteria across a greater number ofmatching] vif the size ratio of larger to smaller is less tioan
small maneuvers between equallyaced holding orbits=ig. equal to2. The ratio in the present problem is 6, so all points
11 showsa thrust profile withnine suchmaneuversThe shape ~ on the inner ellipse havewer ] 0than any point on the outer
of the last thrust curve differs from that fiig. 9 because the  ellipse and a spiral with constaft v cannot satisfy the
increase inai for the final insertion maneuver shifts the patching enditions in Eq.(21). Instead, the constant I i
minimizing value of, to 0.4(cf. Fig. 8). Whereas the original ~ Strategy outlined in sectidh3.2 must be adopted.
scenario required aawimum thrust of 70 . 7E Clor thefirst To facilitate the patched spirals analysis with constant
transfer.eachtransferin this updatedscenario hsa peak thrust 1 @ i Eq.(45) may be rewritten in terms of i as
requirement 0.3 t . 7E CThe total 3¢ requirement for the P -
sequence remairs81 m/s. The tradeoff is that the sequence 10 EQT ip pAIlO— (47)
will now last for a week anthe deputy must start more than
750 km behind the chief mccommodatéhe greater maneaw
time and allow for navigation filter convergence on
intermediate coasting orbits.

4.2. Formation Reconfiguration

Following the same reasoning applied to the congtantase,

it is clear that if points on concentric passive ellipses share a
common | o i, they must also shard | 1O —For any
departure point on the initial ellipse, there are four compatible
After orbiting the target spacecraft long enough on thelocatlons on the destination ellipse. Two of these are located at

passive ellipse tocollect sufficient situational awareness | — @ and have the same relative flight path angie as
observations, the servicer spacecgtforms a maneuver to e departure point. The other two aredat | — and have
reduce the size of the passive ellipse. This is equivalent tb | thatis the negative of the departure value
reducing the serviceros orbi {iIstEQadenppichinga single relafjvg spiraj,bgtween tyq,
eccentricity between sepér and target. Because closed, ellipses.The search space can be divided into four regions

periodic relative motion is desired after the maneuvesghs ~ corresponding tdhe choice of, ~ 1tor, T and]f
majoraxi s of the serviceros fiha'lorblitl mdshen fis@eqpstaptsaany g
target. Unlike the maneuvers considered in the previous sectiofiolutions musthaver 17 .1f . mthen§r ¢ &I ¢

the motion in this case is dened around the target and it may MPlies thati i 11 and the destination ellipse canrbe

be treated as the chief for the analysis. There is no need tifached (cf. Eq(32)). Three of the four regions may thus be

introduce artificial reference points and the simpler patching€liminated from the outset and only 7w, 11 11
conditions in Eq(21) apply. warrants furtheexamination The ellipse and relative velocity

The relative motion on passive ellipse centered on the chief constraints givé — 1 — & * andi i 1 11 71,
can be described analytically iertns of] —and thesemi SO EAs(32) and(46) become
minoraxis]i as L p . L cA i1 6-0F —
gi » oAl &' T oAt @
| 44
Wp oAl O— For a given ratioli 7 i and choice of & half-
revolutions around the target, E¢8) has two solutions in the
.. p pAIDO— 4 domain 1 which are duplicated in“ ic* . There can be
10 gl o OAT O— (49) no solution with] — & “¥¢ because] [ T and the

logarithmic spiral becomes a circl€ig. 13 shows thetwo
solution trajectories for the specified ellipse ratmat p
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Fig. 13. Half-revolution, singlespiral reconfiguration from a pass Fig. 12 Full-revolution, singlespiral reconfiguration from a pass
ellipse with1 i o TUTN to one with] i v tm for a pair ¢ ellipse with i o T to one withy i v tm for a pair o
spacecraft in GEO. spacecraft in GEO.

in the RN coordinates of the targeThe solutions may be maneuvers, the flight time is governed by Keplerian dynamics
characterized as fast and slow according to their departure poiftetween maneuvers. For the optimal threpulse
The trajectory beginning at— nearer to* 7¢ is longer and  reconfiguration in GEO considered here, a fulrur orbital
has lower] ©than the one beginning nearer ‘to As stown period is required. In contrast, the fast spiral trajectory
in Fig. 14 and enumerated iMable2, the fast trajectory takes completeghe reconfiguration ijust over Shours.
less time and carries a lowexw cost than the slower The presence of two solutions is a consequenc® Aflf
trajectory. assuming all values betweed/4 and 3/4 twice in the domain
In addition to the relativepiral reconfigurationTable2 lists 0,“ ) If 11 Mi AZboTt m8rwy the two
the flight time and cost of the optimal impulsive solution for solutions ford  p merge For more extreme ras there are
this reconfiguratio?? As was the case for orbit raising, the no haltrevolution transfers using a single spiréls &
continuous thrust reconfiguratioa$a highersw costthanits  increases of i 7 i increases, the departure point for the
impulsive counterpart but may be accomplished with lessfast solution approachgs— *“ and the slow approaches
propellant mass.An advantage of the continuottsrust 1 — “7¢8This is illustrated for thed ¢ case inFig. 12
reconfiguration that was not evident in the orbit raising scenarioBecausette slow transfethen departs from region of lower
is the substantial reduction in flight time. bgi impulsive relative velocity it experiences an increase in reconfiguration

Fig. 14. Comparison of3 cost (top), thrust magnitude (middle), Fig. 15. Comparison of3:w cost (top), thrust magnitude (middle), .
time-of-flight (bottom) for the fast and slow hatévolution relative spir. time-of-flight (bottom) for the fast and slow fuitvolution relative spir.
reconfiguration maneuvers fig. 13. reconfiguration maneuvers fig. 12.
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